
Knowledge graph augmentation:
consistency, immutability, reliability, and
context
Savaş Takan
Artificial Intelligence and Data Engineering, Ankara University, Ankara, Türkiye

ABSTRACT
A knowledge graph is convenient for storing knowledge in artificial intelligence
applications. On the other hand, it has some shortcomings that need to be improved.
These shortcomings can be summarised as the inability to automatically update all
the knowledge affecting a piece of knowledge when it changes, ambiguity, inability to
sort the knowledge, inability to keep some knowledge immutable, and inability to
make a quick comparison between knowledge. In our work, reliability, consistency,
immutability, and context mechanisms are integrated into the knowledge graph to
solve these deficiencies and improve the knowledge graph’s performance. Hash
technology is used in the design of these mechanisms. In addition, the mechanisms
we have developed are kept separate from the knowledge graph to ensure that the
functionality of the knowledge graph is not impaired. The mechanisms we developed
within the scope of the study were tested by comparing them with the traditional
knowledge graph. It was shown graphically and with t-test methods that our
proposed structures have higher performance in terms of update and comparison. It
is expected that the mechanisms we have developed will contribute to improving the
performance of artificial intelligence software using knowledge graphs.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Databases, Software
Engineering, Blockchain
Keywords Knowledge graph, Knowledge representation, Hashing, Artificial intelligence, Data

INTRODUCTION
Since time immemorial, acquiring, storing, and managing knowledge has been one of the
main goals of humanity. Today, thanks to developing technologies, information is
multiplying very rapidly. Therefore, it becomes difficult to process, infer and use
information. Most of these problems are related to how knowledge is represented. One of
the most widely used knowledge representation methods is the knowledge graph (KG).

KGs have emerged as an essential area in artificial intelligence in the last decade (Rajabi
& Etminani, 2022). A KG can be a directed, labeled, multi-relational graph with some form
of semantics (Kejriwal, 2022). A KG, or a semantic network, is a graphical representation
of real-world entities and relationships, objects, events, situations, or concepts and their
relationships. A KG is essential for storing and making inferences from it.

In recent years, KGs have been widely applied in various domains. In parallel, there have
been studies on their integration with various domains. These include the creation of
semantic KGs for news production, distribution, and consumption in digital news
platforms (Opdahl et al., 2022), the integration of heterogeneous knowledge sources in the

How to cite this article Takan S. 2023. Knowledge graph augmentation: consistency, immutability, reliability, and context. PeerJ Comput.
Sci. 9:e1542 DOI 10.7717/peerj-cs.1542

Submitted 15 December 2022
Accepted 25 July 2023
Published 16 August 2023

Corresponding author
Savaş Takan, savastakan@gmail.com

Academic editor
Claudio Ardagna

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.1542

Copyright
2023 Takan

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1542
mailto:savastakan@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1542
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

creation of large KGs and artificial intelligence (AI) systems to be more explainable and
interpretable (Rajabi & Etminani, 2022), the application of KGs in manufacturing and
production, reasoning technologies in KGs (Chen et al., 2020), the Semantic Web (Ryen,
Soylu & Roman, 2022), applying machine learning, rule-based learning and natural
language processing tools and approaches (Verma et al., 2022), and how statistical models
can be trained on large KGs and used to predict new facts about the world (Nickel et al.,
2016).

Although the KG is a very convenient tool for storing knowledge in artificial
intelligence, it has some essential requirements and shortcomings, no matter which field it
is used in. These shortcomings can be summarized as the problem of automatically
updating all the information that affects a piece of knowledge when it changes, the inability
to sort information, the inability to keep some information immutable, and the inability to
make a quick comparison between information (Kejriwal, 2022; Troussas & Krouska, 2022;
Noy et al., 2019). In our work, reliability, consistency, immutability, and context
mechanisms are integrated into the KG to contribute to solving these problems. However,
it should be emphasized that these mechanisms are not extensions (Choi & Ko, 2023;
Simov, Popov & Osenova, 2016) because the purpose of integrating these mechanisms into
the KG is to improve the performance (Macdonald & Barbosa, 2020; Yang et al., 2022b;
Cannaviccio et al., 2018) of existing KGs by contributing to the solution of their basic
problems. In this respect, referring to this integration as KG augmentation is considered
more appropriate.

The KG must be always consistent (Mu, 2015). This consistency may be lost if any
information changes. To restore coherence, all the information connected to the changed
information must change. This is because a change in the elements that support a piece of
knowledge, with a chain effect, calls into question the reality of all the elements supported
by that knowledge. Time is vital to ensure consistency in the knowledge change
(Terenziani, 2000). In addition, consistently keeping knowledge helps to reduce
complexity (Liberatore & Schaerf, 2001). The classical knowledge structure can find
changing knowledge by cause-effect and inference. However, since such methods do not
have stamping and tracking, they are complex and can lead to overlooking information
that needs to change. Moreover, if this inference is global, it will have performance
problems, and if it is local, it will return conflicting information because it cannot capture
change. At the same time, there are severe performance penalties when erroneous
information is removed, new information is added, or existing information is modified.

Another requirement for the KG is to ensure the ordering of knowledge (Porebski,
2022). We have integrated a reliability mechanism into the KG to fulfill this requirement.
Accordingly, the more reliable elements supporting a piece of knowledge, the more reliable
that knowledge is considered to be. In the opposite case, the knowledge in question is
interpreted as doubtful. Thus, ranking between knowledge becomes possible.

Another requirement in the KG is the comparison of two pieces of knowledge (Wu
et al., 2021; Jabla et al., 2022). It is very important that this comparison can be made very
quickly. In our work, we integrate a hashing mechanism called context into the KG, which
allows us to determine the identity of two pieces of knowledge in O(1) time. Context allows

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 2/21

http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

the disambiguation of a piece of knowledge by looking at its contexts. For example, Jaguar
refers to both an animal and a programming language. The ambiguity about which of these
is expressed in a KG can be resolved by comparing its constituent knowledge, thanks to the
context augmentation we have developed.

Another vital element of the KG is that knowledge can be immutable (Cano-Benito,
Cimmino & García-Castro, 2021; Besançon et al., 2022). For example, while the people who
buy or read a book can change, the book’s title and the author must be immutable. In other
words, some elements can change knowledge, and others cannot.

The proposed augmentation ensures consistency by marking the knowledge as soon as
it changes and updating the associated knowledge to run in the background at any time. To
ensure that the knowledge is immutable, a structure has been created to store immutable
and mutable data. Regarding the reliability of the knowledge, an information hierarchy has
been developed in the system. Regarding context, the summarization function provides
unique hash values for existing contexts. Thus, when there is a match between different
contexts of two pieces of knowledge, it can be quickly recognized that they have the same
context.

In the study, the research on the subject is given respect, and then the methodology of
the proposed plugins is explained. Then, the plugins are explained in detail, and their
advantages and disadvantages are presented.

RELATED WORK
There is a vast literature on the KG. There are primarily many review articles on the topic
(Chen et al., 2021; Cambria et al., 2021; Chen, Jia & Xiang, 2020; Issa et al., 2021; Dai et al.,
2020).

Knowledge graph augmentation adds missing facts to an incomplete knowledge graph
to improve its effectiveness in web search and question-answering applications. State-of-
the-art methods rely on information extraction from running text, leaving rich sources of
facts such as tables behind. Focusing on closing this gap in their work (Macdonald &
Barbosa, 2020), the researchers developed a neural method that uses contextual
information surrounding the table in a Wikipedia article. In a different work (Yang et al.,
2022b), a general knowledge graph contrastive learning framework (KGCL) and a
knowledge graph augmentation scheme that mitigates knowledge noise for knowledge
graph-enhanced recommender systems are proposed.

In a recent work on the topic, a data-efficient method for multilingual named entity
(MNE) resources with more languages was developed (Severini et al., 2022). A different
study developed a supervised approach to extract missing categorical features in Web
markup (Tempelmeier, Demidova & Dietze, 2018). In another article, a new model is
proposed that effectively links new entities and existing KGs through a pre-trained
language model using two learning methods (Choi & Ko, 2023). Sagi, Wolf & Hose (2019)
investigated the prevalence of novel entities in news feeds to determine how much
information is novel and not grounded. In another study, a strategy for enriching WSD
knowledge bases with data-driven relations from a gold standard corpus was presented,

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 3/21

http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

and it was shown that the accuracy in the WSD task increased statistically significantly
(Simov, Popov & Osenova, 2016).

General solutions to augment KGs with facts extracted fromWeb tables aim to associate
pairs of column columns with a KG relation based on the matches between pairs of entities
in the table and facts in the KG. Motivated by the shortcomings of these approaches,
researchers in one study (Cannaviccio et al., 2018) proposed an alternative solution that
exploits patterns emerging in the schemas of a large corpus of Wikipedia tables. In another
study (Nguyen et al., 2023) introducing SocioPedia+, a real-time visual analysis system for
social event discovery in time and space domains, a social knowledge graph dimension was
added to the multivariate analysis of the system, making the process significantly
improvable.

On the other hand, many studies focus on consistency in KG. In one of the most
influential early studies, two new complementary features on constraints in a network were
developed (van Beek & Dechter, 1997). The authors suggest that these features can be used
to decide whether it would be helpful to pre-process the network before a callback search.
In a different study, tools for consistency checking were found to provide an opportunity
to reduce minor inconsistencies in the Gene Ontology (GO), and redundancies in its
representation (Yeh et al., 2003). Another study presented a general, consistency-based
framework for expressing belief change (Delgrande & Schaub, 2003). With this framework,
other belief change operations, such as updating and deleting, can also be expressed. In
another study, a measurement parameter was developed to quantify the amount of
inconsistency in probabilistic knowledge bases (Muiño, 2011). The study measured
inconsistency by considering the minimum adjustments in the degrees of certainty of
statements (i.e., probabilities in this article) necessary to make the knowledge base
consistent. In a different study, Mu (2015) proposed a measure for the degree of
responsibility of each formula in a knowledge base for the inconsistency of that base. This
measure is given in terms of the minimum, inconsistent subsets of a knowledge base.

A different study on the topic includes studies that address the central problem of the
computational complexity of consistency checking (Grant, Molinaro & Parisi, 2018), as
well as a graph-based approach to measuring inconsistency for a knowledge base (Mu,
2018) better to understand the nature of inconsistency in a knowledge base. Another recent
study starts from the challenges of the belief revision process (Bello López & De Ita Luna,
2021). Accordingly, one of the most critical problems is how to represent the knowledge
base K to be considered and how to add new information. In this article, an algorithmic
proposal is developed to determine when (K E (K �)) is inconsistent.

Besides consistency, context is central to many modern safety and security-critical
applications. In a different study, the phrase similarity of human comments was
determined using four different methods, including item matching, linguistic collocation
approaches, and wordnet semantic network distance (Stock & Yousaf, 2018). The method
that incorporates context is said to be the most successful of the four methods tested,
selecting the same geometric configuration as human respondents in 69% of cases. In
another study on the context in KGs, a formal approach to achieve contextual reasoning

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 4/21

http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

was developed based on the lack of formal integration of knowledge and context in existing
context-aware systems (Alsaig, Alagar & Nematollaah, 2020).

In the literature, there are many studies on the ordering of nodes in graph theory
(Sciriha & da Fonseca, 2012; Nirmala & Nadarajan, 2022; Huang et al., 2021; Christoforou
et al., 2021). However, as far as we know, there needs to be research on ordering in the KG.
At the same time, although the issue of immutability in data structures has been frequently
studied (Chowdhury et al., 2018; Ozdayi, Kantarcioglu & Malin, 2020; Stančić & Bralić,
2021; Balakrishnan, Ziarek & Kennedy, 2019), there is no research on immutability in KGs.
In addition, although several studies focused on reliability and ranking in the KG (Seo, Oh
& Lee, 2020; Yang et al., 2022a; Jiang et al., 2022), these studies are not directly related to
the topic of our article. Similarly, only some studies focused on hashing in the KG (Khan
et al., 2023; Wang, Shang & Qiao, 2020). Still, the existing studies in the literature are
separate from the plugins we developed in our article.

As can be seen, studies on KG in the literature have covered a wide range of topics.
Studies have generally focused on integrating the KG into other domains. Studies focusing
on consistency in the KG have generally developed complex solutions in the literature. In
the limited number of context-oriented studies in the literature, application-based
solutions have been developed without any change in the structure of the KG. Our study
differs from the existing studies in the literature that focus on consistency and context in
the KG by providing these extensions with hashing technology. This is because no studies
in the existing literature integrate invariance, consistency, reliability, and context into the
KG using hashing technology. The main contribution of our work to the literature is to
show that four different properties can be integrated into the KG with a simple mechanism
(Hashing). In this respect, our work is expected to contribute to the literature on better
representation of knowledge, the solutions created, and the development of artificial
intelligence software using KGs.

MATERIAL AND METHODS
In our work, consistency, context, reliability, and immutability mechanisms are integrated
into the KG to perform the operations of where existing knowledge comes from, by whom
it is supported, the rate of support, ranking, and whether it is a modifiable or immutable
and automatic update. Unlike the literature, these augmentations were developed using the
hashing mechanism. This is because Hashing technology, a straightforward mechanism,
offers the possibility to provide four different properties quickly. In our work, a
“Knowledge” model provides consistency, immutability, reliability, and context
augmentations to the KG.

Thanks to the hashing mechanism, it is possible to check whether the relationships and
data in the information have changed. Relationships that are checked whether they change
are called constant relationships, and relationships that are not checked are called variable
relationships. On the other hand, data is constantly checked and therefore considered
constant in the KG. Figure 1 shows the general features of the KG we developed.

The hash mechanism provides immutability control in the KG. Here, a hash is a hash of
immutable relations and data. The hash is calculated and added to the hash set at any time.

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 5/21

http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

In the information structure we have developed, this is done with the lock() function.
Then, a new hash value is calculated and compared with the old hash values in the hash set
to check for any changes in the information. After that, if there is a change in the relations
or data of the information, a different hash value will be output, so it can be automatically
determined whether the information has changed and, if so, its position. If the results are
equal, the structure has not been changed; if the results are not equal, it means the structure
has been changed. This is done with the isLock() function. The general structure of the lock
and islock state of the information is shown in Fig. 2.

An example hash-finding formula is as follows. Here, the value i indicates how many of
the n fixed data are expressed. The value j indicates how many of the m fixed relations are
expressed.

Calculating the information hash value:

hash
Xn
i¼0

Immutable datai þ
Xm
j¼0

Immutable relationshipj

 !
(1)

when a piece of information is deleted, modified, created, or added, the information that
depends on it is recalculated and updated by Algorithm 1 to maintain consistency. In
parallel, Algorithm 1 can detect if there has been a change in the KG. Algorithm 1 ensures
changes are propagated to all low-complexity points in the KG. In addition, the same
algorithm can also be used to find where the changes in the KG have occurred. In the
algorithm, updates are performed on the invariant relations in the KG. In other words,
variable relations are not taken into account. This algorithm was developed using depth-
first search, dynamic programming, and topological ranking.

Since the KG is a cyclic graph with multiple transitions, nodes, and edges are swapped to
traverse all transitions. Thus, all edges can be traversed. In this way, the whole system is
traversed with O(E) complexity. As a result, the whole system can be updated with linear

Değişebilir veri

Mutable dictionary

Immutable dictionary

stamp = Hash
(immutable data, immutable relationships)

Data Relationship

Knowledge

Immutable set

Figure 1 The general scope of knowledge. Full-size DOI: 10.7717/peerj-cs.1542/fig-1

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 6/21

http://dx.doi.org/10.7717/peerj-cs.1542/fig-1
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

complexity. In the KG, the update can be determined according to the depth parameter
given by the user. Thus, the user can determine how many depth units can be updated.

LIMITATIONS
To physically test the model we developed, four STM32 and Lora Modules were used, and
tests for readability, storage, and data manipulation were performed. As a result, it was
determined that the system could physically operate without problems. However, for

Figure 2 Lock and unlock states. Full-size DOI: 10.7717/peerj-cs.1542/fig-2

Algorithm 1 The algorithm below updates all affected nodes, and edges, whenever there is a change
in any node.

stack ½startEdge�
visited ½�
while stack do

for all neighbor_edge 2 graph.edges(edge[1]) do

if neighbor_edge 62 visited then

visited.append(neighbor_edge)

if edge 62 parent[neighbor_edge] then

parent[neighbor_edge].append(edge)

cost weight_cost[edge] + graph[neighbor_edge][‘weight’]

weight_cost[neighbor_edge] + = cost

end if

end if

end for

end while

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 7/21

http://dx.doi.org/10.7717/peerj-cs.1542/fig-2
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

financial reasons, more comprehensive and holistic tests could not be carried out at this
stage, and it was impossible to test the model we developed on large systems. However,
such a test in our work is considered necessary and valuable. For this reason, more
comprehensive applications will be realized by providing the necessary resources.

Immutability, reliability, consistency, and contextualization are not elements that can be
easily tested. For this reason, in our study, we have tried to prove the applicability of these
elements through example scenarios. In future studies, running it on real scenarios would
be helpful.

KNOWLEDGE GRAPH AUGMENTATIONS
This section describes each plugin we developed for the KG and proves their functionality
by testing them with example scenarios. Thus, it is shown that our KG augmentations can
be used in various software processes.

Immutability
To illustrate the uncontrolled relationship, five different pieces of information are
constructed below. A has an outward relationship with C and B through k and j. B, C, j, k
have no relationship at this stage. These five pieces of knowledge are generated in Fig. 3:

The lock function has yet to be executed in the phase shown above. Therefore, no
immutability mechanism has been activated, meaning the hash values will be shown as
Null. In the JSON representation above, there are four values. The first is the checked data.
The second is the checked relations, the third is the unchecked relations, and the fourth is
the hash value. By calling the lock function of A with the following command, the system is
locked and thus made unalterable. The command to call the lock function of A is as
follows:

A.lock()

After the Lock function is applied, the JSON format view of the structure follows. The
point to note here is that hash values are entered. Since C and k information is dependent
on A, when A information is made immutable, this information also becomes immutable.
On the other hand, since j and B are not checked (they have a variable relationship), they
are not fixed, and the hash value remains Null. This can be easily seen in Formula (1).

Figure 3 Immutability. Full-size DOI: 10.7717/peerj-cs.1542/fig-3

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 8/21

http://dx.doi.org/10.7717/peerj-cs.1542/fig-3
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

Furthermore, with the calculation in Formula (1) and Algorithm 1, A can determine
whether the information in k and C has changed, and if so, which information has changed
in Fig. 4.

At any time, a new piece of information can be added linked to the variable relation, and
the hash value will not change even if the lock function is executed. This provides design
flexibility. Because some relations are fixed while others are variable. For example, the
painter of a work of art is fixed, while the customers who buy this work of art are variable.
It is challenging to create this structure in the KG. Below, it is shown in Fig. 5 that hash
values do not change even if the relations we do not control (variable) change:

Suppose new information is added to the immutable relation on demand. In that case,
the hash values are reconstructed, and when these new values are compared with the old
ones, it will be seen that the newly created hash values are different from the old ones. The
point we want to draw attention to here is that the hash value of the A information will
change when a new D information is added to the above example. This is shown below in
Fig. 6:

Diversity for uncontrolled relations needs to be present in the KG. This significantly
affects the design manipulations. For example, if j and B did not have varying relationships,
customer 1 information would remain in the system. Also, the hash values of the entire
system would have to be recalculated in case of any changes. Furthermore, since there are
no lock and isLock functions in the KG, the system can only be fixed manually or created
from scratch. This can lead to serious time and space losses.

Reliability
The reliability augmentation consists of the sum of invariant relations in the KG. In this
way, the reliability mechanism allows information to be ranked. Information with a high
trust value is more secure and ranks higher.

In reliability augmentation, the reliability of a piece of information is related to the
number of immutable relations it has. That is, the more immutable relations a piece of
information has with other information, the more reliable it is. It is called suspect
information if a piece of information has no fixed relationships. The following example

Figure 4 The calculation in Formula (1) and Algorithm 1.
Full-size DOI: 10.7717/peerj-cs.1542/fig-4

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 9/21

http://dx.doi.org/10.7717/peerj-cs.1542/fig-4
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

shows a JSON representation of C, which has no fixed relationships. Here the reliability
value of C is 0.

C: {{‘Image 1’}, Null, Null, {13h}}

The representation of Z information with more than one constant relationship is shown
in Fig. 7. Here, the reliability value of Z is 2. Regarding reliability, if the user enters a depth
parameter, the calculations are made up to that depth. For example, if the depth parameter
of Z is 1, the reliability value will also be 1. This feature has been developed to reduce time
and space complexity significantly.

The KG has no practical and simple reliability mechanism in the sense we have
developed. It is, therefore, not possible to rank trustworthiness. This prevents a trust-based
ranking mechanism. On the other hand, the trustworthiness mechanism we have
developed can be applied practically and simply to the KG, thus efficiently addressing the
need for trust-based ranking when necessary.

Figure 5 Hash values do not change even if the relations we do not control (variable) change.
Full-size DOI: 10.7717/peerj-cs.1542/fig-5

Figure 6 The hash value of the A information will change when a new D information is added.
Full-size DOI: 10.7717/peerj-cs.1542/fig-6

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 10/21

http://dx.doi.org/10.7717/peerj-cs.1542/fig-5
http://dx.doi.org/10.7717/peerj-cs.1542/fig-6
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

Consistency
This section explains the consistency augmentation in the KG through an example
scenario. First, five pieces of information are created. At the time of creation, they have no
fixed or variable relationships. Below, the creation of the information is shown in JSON
format.

K1: {‘A 36-year-old man stabbed his ex-fiancée to death.’, Null, Null, Null, Null}

K2: {‘23 years in prison sentence requested for a man who stabbed his ex-fiancée to death.’,
Null, Null, Null}

K3: {‘Man who stabbed his ex-fiancée to death is released in good condition after the first
hearing.’, Null, Null, Null}

K4: {‘Women’s rights activists protested this decision in front of the court.’, Null, Null,
Null}

K5: {‘Feminism is spreading.’, Null, Null, Null, Null}

Once information is created, a cause-and-effect relationship is established between
them. If a piece of information has no relationship, it is not reliable. For example, in the
commands below, the cause of the fifth information is the relationship between the fourth,
the cause of the fourth is the relationship between the third, the cause of the third is the
relationship between the second, and the cause of the second is the relationship between
the first. The disappearance of the fourth piece of information would remove the reliability
of the fifth piece of information and make it suspect. Below, after the cause and effect
relationships of the information have been entered, the relationships between the
information are shown in JSON format, locked with the lock function.

A1: {‘why’, Null, Null, {12fK}}

K1: {‘A 36-year-old man stabbed his ex-fiancée to death.’, Null, Null, {76Tf}}

K2: {‘Aman who stabbed his ex-fiancée to death has been sentenced to 23 years in prison.’,
{A1: K1}, Null {23wS}}

Figure 7 The representation of Z information with more than one constant relationship.
Full-size DOI: 10.7717/peerj-cs.1542/fig-7

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 11/21

http://dx.doi.org/10.7717/peerj-cs.1542/fig-7
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

K3: {‘The man who stabbed his ex-fiancée to death was released in good condition at the
first hearing.’, {A1: K2, A1: K1}, Null, {23dS}}

K4: {‘Women’s rights activists protested this decision in front of the court.’, {A1: K3}, Null,
{P3se}}

K5: {‘Feminism is spreading.’, {A1: K4}, Null, {wqq2}}

When an error or change occurs in the information itself or in any of the fixed
information that supports it, the model finds the source of the change, removes that source
from the context, and updates all the information associated with that source depending
on the depth parameter. This ensures consistency in the system.

The consistency concept in the plugin we developed focuses on changes in the KG copy
and in the KG itself. A change in any information in the KG will cause every piece of
information in the KG to be updated and make it possible to update changes in its copies
on demand.

Context
Below, four relationships are created to explain the context of a piece of information.

A1: {{‘why’}, Null, Null, Null, Null}

K1: {{‘data1’}, Null, Null, Null, Null}

K2: {{‘data2’}, A1:K1, Null, Null}

K3: {{‘data3’}, {A1:K1, A1:K2}, Null, Null}

K4: {{‘data4’}, {A1:K3}, Null, Null}

I have shared the context of the above knowledge below for you to review. Here,
Knowledge1 has no context but persists in the model. This means that there is no invariant
relationship to verify Knowledge1. Whether or not any knowledge that has no invariant
relationship and is therefore not ordinarily reliable is considered reliable is at the discretion
of the creator of the KG.

As seen in Fig. 8, the context of Knowledge4 includes Knowledge1, Knowledge2, and
Knowledge3. Since the hash value will be specific to the graph when calculating the
context, the context of Knowledge4 in the figure above will be specific to Knowledge1,
Knowledge2, and Knowledge3 and the relationship between them. As can be seen in Fig. 3,
the values held in the hash set also determine the context. In other words, since a piece of
knowledge can have multiple contexts, it is possible to create the contexts of that
knowledge by assigning the desired summaries to the hash set. By looking at these hash
values, it can then determine whether one piece of information is compatible with the
context of another. This removes many ambiguities about information.

The plugin we developed supports the context mechanism for comparing information
in the KG. This makes it possible to compare information in the KG easily. As in real life,
the value of a piece of information can vary according to many different contexts. This can
be easily realized in the plugin we have developed.

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 12/21

http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

EXPERIMENT
To test the augmentations we developed, we created the experimental setup in Fig. 9. In
this experiment, persons A, B, C, D, and E are created, and the relationships between these
persons are shown. In the relationships between people, the red arrows cannot be changed,
and the blue arrows can be changed. For example, being an artist or a father is a fixed
relationship. In contrast, being a moviegoer, the city one lives in, one’s friends, or hobbies
are relationships that can change depending on one’s choice. The more fixed relationships
person A has, the more trustworthy he/she is considered to be. For example, in Fig. 9, A’s
credibility is 3, and B’s is 4. In this case, B is considered more trustworthy than A.
Whenever an update is made to B, the constant relations between the labels “female, E and
Ankara University” that support B are also updated. This mechanism is not present in the
graph data structure.

For example, if we want to change the cycling hobby, we need to update people D and A
who are affected by that hobby. Normally we have to do this manually, which poses a
problem for the consistency of the KG. For example, we need to remember to add the
information to the KG or more time to add the information, which can lead to various
problems. This can lead to various inference problems in the KG. Therefore, an algorithm
has been developed that automatically updates any change on the fly. Thus, in the
experimental example, A and D were updated automatically.

Finally, when we want to compare any two people, for example, C and E are people with
the same occupation and living in the same city. C and E are considered the same if this
information is recorded as context. But C is A’s father, and E is B’s sister. From this point
of view, C and E are treated as different people because they have different contexts.

Figure 8 Knowledge’s context structure. Full-size DOI: 10.7717/peerj-cs.1542/fig-8

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 13/21

http://dx.doi.org/10.7717/peerj-cs.1542/fig-8
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

Thanks to the hashing mechanism used in our experiments, it is possible to determine in a
very short time which contexts they are in and which they have in common.

Apart from the above scenario, on a computer with Intel i7 16 GB ram, random KGs
from 1 to 3,000 knowledge were generated using Python in the Networkx library. On top of
that, the method we developed in this study was tested by comparing it with the traditional
method in terms of update and search mechanisms.

In the experiment, we first focus on the update rate of the knowledge graph. The reason
for testing the update rate is that it has a strong relationship with consistency, immutability
and reliability. Reliability ensures that information is linked together, and immutability
ensures that information is updated quickly whenever there is a change in the information.
The totality of this fast updating process is consistency. From this point of view, our
experiment demonstrated the time it takes to maintain consistency in the knowledge graph
after a change occurs.

Looking at the experiment results, linear time is required to access information. After
accessing the information in question, Deep First Search or Breath First Search must be
used to update the values. Since this also takes linear time, a total of O(n2) time is needed.
On the other hand, the algorithm we developed uses only Deep First Search because it is
updated instantly, and therefore its complexity is in linear time. The experiment results are
shown in Fig. 10. As a result of our experiments, the P value of the t-test was 1.30e−06.
Herefore, there is a significant difference between the two values.

The graph below looks at the context in the knowledge graph. The main feature of
context is the comparison of the similarity of the relationships of two different nodes.

Finding two pieces of information first and then looking at the properties of the found
information leads to exponential complexity. On the other hand, since our algorithm uses
the hashing mechanism, comparing two pieces of information takes place in constant time

Figure 9 General representation of the experiment. Full-size DOI: 10.7717/peerj-cs.1542/fig-9

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 14/21

http://dx.doi.org/10.7717/peerj-cs.1542/fig-9
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

in Fig. 11. This fixed time is the length of the context set. As a result of our experiments, the
P value of the t-test was 6.39e−05. Therefore, there is a significant difference between the
two values.

Table 1 compares with the knowledge graph to illustrate the advantages of the
developed augmentations. Based on our experiment, we can say that our augmentations
provide time benefits by eliminating some important shortcomings in artificial
intelligence.

EVALUATION
This section presents the advantages and disadvantages of the augmentations we
developed for the KG.

The advantage of the immutability augmentation is that the information in the KG is
stamped as changed/unchanged, making it easy to identify which information has
changed. While there is a wide range of work on immutability in the data structure, there
must be work on immutability in KGs.

The immutability plugin contributes to keeping the KG consistent by allowing
information to be easily updated. This contribution is referred to as consistency
augmentation in this article. Thanks to Algorithm 1, the consistency augmentation hovers
over all changed information and ensures that this information is updated quickly. This
function is executed automatically when a piece of information changes and updates all the
information it affects based on that change. There is a wide variety of work on consistency
in the KG. However, these studies have yet to use a hashing mechanism. At the same time,
almost all of the studies in the literature involve very complex procedures.

Figure 10 Updating speed of the knowledge graph with improved augmentations.
Full-size DOI: 10.7717/peerj-cs.1542/fig-10

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 15/21

http://dx.doi.org/10.7717/peerj-cs.1542/fig-10
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

Credibility augmentation allows for the ranking of information. Information ranking
reveals the importance of two or more pieces of information. Ranking information in the
KG according to its importance provides the advantage and flexibility to compare it. Few
studies on trustworthiness in KGs have used hashing mechanisms in the literature. At the
same time, almost all existing studies involve rather complex procedures.

Context augmentation allows a comparison between two pieces of information. Context
augmentation allows us to determine whether the information is the same by looking at the
hash values. Thanks to the hash set, the information has more than one context, and again
thanks to the hash value, the context in which the information is located can be
determined. This gives the KG the advantage of flexibility and abstraction. Moreover, the
time complexity is O(1) due to the comparison with the hash algorithm. Although there
are several studies on the context of KGs, they have yet to use the hashing mechanism. At
the same time, almost all existing works involve very complex procedures.

In our work, the disadvantage of the four augmentations developed for the KG is that
the hash values of all the information the KG is linked to are stored due to the hashing
mechanism. Here, a hash value of length N × (256 bytes) is stored if the information has N
links. This slightly increases the space complexity. Another aspect is the runtime of the

Figure 11 Comparison speed of the knowledge graph with the plugins developed.
Full-size DOI: 10.7717/peerj-cs.1542/fig-11

Table 1 Comparison of knowledge graph and tag mechanism.

Type Update Immutability Sorting Comparison

Knowledge graph Manual No O(n2) O(n2)

Tag Automatic Yes O(1) O(1)

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 16/21

http://dx.doi.org/10.7717/peerj-cs.1542/fig-11
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

update function, which is O(E) complexity. The update can be increased or decreased with
the diameter parameter. This has a significant impact on the complexity. Considering the
contributions of the augmentations we have developed to the KG, these two issues, which
can be expressed as disadvantages, can be ignored.

CONCLUSION
In our work, consistency, context, reliability, and immutability mechanisms are integrated
into the KGmodularly to perform the operations of where existing knowledge comes from,
by whom it is supported, the rate of support, ranking, modifiability or immutability, and
automatic update. The hashing mechanism was used in the development of these plugins.
This is because hashing technology, a straightforward mechanism, can provide four
different properties quickly. In our work, a “Knowledge” model provides consistency,
immutability, reliability, and context to the KG.

The first of our proposed extensions, immutability, ensures that all associated
information is immutable when one piece of information is immutable. This guarantees
information reliability. The hash information changes whenever there is a change, so it is
immediately possible to identify where the change occurred. The level of trustworthiness is
related to the amount of trustworthy information that supports the information. This
allows information to be ranked according to its trustworthiness. Consistency refers to the
fact that whenever there is a change in the KG, all affected information is immediately
updated. The context consists of all the information about a piece of knowledge and its
relationships. The different contexts are calculated and stored in a context array, and the
information can be checked for relevance to other contexts by looking at the context array.

With the augmentations we have developed, additional features have been added to the
KG, enabling it to reflect knowledge more comprehensively. The augmentations are
expected to contribute to developing artificial intelligence software that utilizes the KG. In
a broader sense, our work is expected to contribute to developing the software needed in
knowledge representation and a wide range of fields related to knowledge since knowledge
is a structure used in every field. In future work, it is planned to realize comprehensive plot
implementations of the plugins developed as a proposal.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Savaş Takan conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 17/21

http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

Data Availability
The following information was supplied regarding data availability:

The source codes are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1542#supplemental-information.

REFERENCES
Alsaig A, Alagar V, Nematollaah S. 2020. Contelog: a declarative language for modeling and

reasoning with contextual knowledge. Knowledge-Based Systems 207(1):106403
DOI 10.1016/j.knosys.2020.106403.

Balakrishnan D, Ziarek L, Kennedy O. 2019. Fluid data structures. In: Proceedings of the 17th
ACM SIGPLAN International Symposium on Database Programming Languages, DBPL 2019.
New York, NY, USA: Association for Computing Machinery, 3–17.

Bello López P, De Ita Luna G. 2021. An algorithm to belief revision and to verify consistency of a
knowledge base. IEEE Latin America Transactions 19(11):1867–1874
DOI 10.1109/TLA.2021.9475620.

Besançon L, Da Silva CF, Ghodous P, Gelas J-P. 2022. A blockchain ontology for DApps
development. IEEE Access 10:49905–49933 DOI 10.1109/ACCESS.2022.3173313.

Cambria E, Ji S, Pan S, Yu PS. 2021. Knowledge graph representation and reasoning.
Neurocomputing 461(5):494–496 DOI 10.1016/j.neucom.2021.05.101.

Cannaviccio M, Ariemma L, Barbosa D, Merialdo P. 2018. Leveraging wikipedia table schemas
for knowledge graph augmentation. In: Proceedings of the 21st International Workshop on the
Web and Databases DOI 10.1145/3201463.3201468.

Cano-Benito J, Cimmino A, García-Castro R. 2021. Toward the ontological modeling of smart
contracts: a solidity use case. IEEE Access 9:140156–140172
DOI 10.1109/ACCESS.2021.3115577.

Chen X, Jia S, Xiang Y. 2020. A review: knowledge reasoning over knowledge graph. Expert
Systems with Applications 141(6):112948 DOI 10.1016/j.eswa.2019.112948.

Chen Z, Wang Y, Zhao B, Cheng J, Zhao X, Duan Z. 2020. Knowledge graph completion: a
review. IEEE Access 8:192435–192456 DOI 10.1109/ACCESS.2020.3030076.

Chen X, Xie H, Li Z, Cheng G. 2021. Topic analysis and development in knowledge graph
research: a bibliometric review on three decades. Neurocomputing 461(3):497–515
DOI 10.1016/j.neucom.2021.02.098.

Choi B, Ko Y. 2023. Knowledge graph extension with a pre-trained language model via unified
learning method. Knowledge-Based Systems 262(6):110245 DOI 10.1016/j.knosys.2022.110245.

Chowdhury MJM, Colman A, Kabir MA, Han J, Sarda P. 2018. Blockchain versus database: a
critical analysis. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications/12th IEEE International Conference on Big Data Science and
Engineering (TrustCom/BigDataSE). Piscataway: IEEE, 1348–1353.

Christoforou E, Nordio A, Tarable A, Leonardi E. 2021. Ranking a set of objects: a graph based
least-square approach. IEEE Transactions on Network Science and Engineering 8(1):803–813
DOI 10.1109/TNSE.2021.3053423.

Dai Y, Wang S, Xiong NN, Guo W. 2020. A survey on knowledge graph embedding: approaches,
applications and benchmarks. Electronics 9(5):750 DOI 10.3390/electronics9050750.

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 18/21

http://dx.doi.org/10.7717/peerj-cs.1542#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1542#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1542#supplemental-information
http://dx.doi.org/10.1016/j.knosys.2020.106403
http://dx.doi.org/10.1109/TLA.2021.9475620
http://dx.doi.org/10.1109/ACCESS.2022.3173313
http://dx.doi.org/10.1016/j.neucom.2021.05.101
http://dx.doi.org/10.1145/3201463.3201468
http://dx.doi.org/10.1109/ACCESS.2021.3115577
http://dx.doi.org/10.1016/j.eswa.2019.112948
http://dx.doi.org/10.1109/ACCESS.2020.3030076
http://dx.doi.org/10.1016/j.neucom.2021.02.098
http://dx.doi.org/10.1016/j.knosys.2022.110245
http://dx.doi.org/10.1109/TNSE.2021.3053423
http://dx.doi.org/10.3390/electronics9050750
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

Delgrande JP, Schaub T. 2003. A consistency-based approach for belief change. Artificial
Intelligence 151(1):1–41 DOI 10.1016/S0004-3702(03)00111-5.

Grant J, Molinaro C, Parisi F. 2018. Probabilistic spatio-temporal knowledge bases: capacity
constraints, count queries, and consistency checking. International Journal of Approximate
Reasoning 100(1–2):1–28 DOI 10.1016/j.ijar.2018.05.003.

Huang Y, Zhang L, Yang X, Chen Z, Liu J, Li J, Hong W. 2021. An efficient graph-based
algorithm for time-varying narrowband interference suppression on SAR system. IEEE
Transactions on Geoscience and Remote Sensing 59(10):8418–8432
DOI 10.1109/TGRS.2021.3051192.

Issa S, Adekunle O, Hamdi F, Cherfi SS-S, Dumontier M, Zaveri A. 2021. Knowledge graph
completeness: a systematic literature review. IEEE Access 9:31322–31339
DOI 10.1109/ACCESS.2021.3056622.

Jabla R, Khemaja M, Buendia F, Faiz S. 2022. Automatic rule generation for decision-making in
context-aware systems using machine learning. Computational Intelligence and Neuroscience
2022(3):5202537 DOI 10.1155/2022/5202537.

Jiang S, Liu Y, Zhang Y, Luo P, Cao K, Xiong J, Zhao H, Wei J. 2022. Reliable semantic
communication system enabled by knowledge graph. Entropy 24(6):846
DOI 10.3390/e24060846.

Kejriwal M. 2022. Knowledge graphs: a practical review of the research landscape. Information
13(4):161 DOI 10.3390/info13040161.

Khan N, Ma Z, Yan L, Ullah A. 2023. Hashing-based semantic relevance attributed knowledge
graph embedding enhancement for deep probabilistic recommendation. Applied Intelligence
53(2):2295–2320 DOI 10.1007/s10489-022-03235-7.

Liberatore P, Schaerf M. 2001. Belief revision and update: complexity of model checking. Journal
of Computer and System Sciences 62(1):43–72 DOI 10.1006/jcss.2000.1698.

Macdonald E, Barbosa D. 2020. Neural relation extraction on wikipedia tables for augmenting
knowledge graphs. In: Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. New York: ACM, 2133–2136.

Mu K. 2015. Responsibility for inconsistency. International Journal of Approximate Reasoning
61(1):43–60 DOI 10.1016/j.ijar.2015.04.007.

MuK. 2018.Measuring inconsistency with constraints for propositional knowledge bases. Artificial
Intelligence 259(3):52–90 DOI 10.1016/j.artint.2018.02.003.

Muiño DP. 2011. Measuring and repairing inconsistency in probabilistic knowledge bases.
International Journal of Approximate Reasoning 52(6):828–840 DOI 10.1016/j.ijar.2011.02.003.

Nguyen TM, Chun H-W, Hwang M, Kwon L-N, Lee J-M, Park K, Jung JJ. 2023. SocioPedia+: a
visual analytics system for social knowledge graph-based event exploration. PeerJ Computer
Science 9(2):e1277 DOI 10.7717/peerj-cs.1277.

Nickel M, Murphy K, Tresp V, Gabrilovich E. 2016. A review of relational machine learning for
knowledge graphs. Proceedings of the IEEE 104(1):11–33 DOI 10.1109/JPROC.2015.2483592.

Nirmala P, Nadarajan R. 2022. Cumulative centrality index: centrality measures based ranking
technique for molecular chemical structural graphs. Journal of Molecular Structure 1247(3–
4):131354 DOI 10.1016/j.molstruc.2021.131354.

Noy N, Gao Y, Jain A, Narayanan A, Patterson A, Taylor J. 2019. Industry-scale knowledge
graphs: lessons and challenges. ACM Queue 17(2):48–75 DOI 10.1145/3329781.3332266.

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 19/21

http://dx.doi.org/10.1016/S0004-3702(03)00111-5
http://dx.doi.org/10.1016/j.ijar.2018.05.003
http://dx.doi.org/10.1109/TGRS.2021.3051192
http://dx.doi.org/10.1109/ACCESS.2021.3056622
http://dx.doi.org/10.1155/2022/5202537
http://dx.doi.org/10.3390/e24060846
http://dx.doi.org/10.3390/info13040161
http://dx.doi.org/10.1007/s10489-022-03235-7
http://dx.doi.org/10.1006/jcss.2000.1698
http://dx.doi.org/10.1016/j.ijar.2015.04.007
http://dx.doi.org/10.1016/j.artint.2018.02.003
http://dx.doi.org/10.1016/j.ijar.2011.02.003
http://dx.doi.org/10.7717/peerj-cs.1277
http://dx.doi.org/10.1109/JPROC.2015.2483592
http://dx.doi.org/10.1016/j.molstruc.2021.131354
http://dx.doi.org/10.1145/3329781.3332266
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

Opdahl AL, Al-Moslmi T, Dang-Nguyen D-T, Gallofré Ocaña M, Tessem B, Veres C. 2022.
Semantic knowledge graphs for the news: a review. ACM Computing Surveys 55(7):1–38
DOI 10.1145/3543508.

Ozdayi MS, Kantarcioglu M, Malin B. 2020. Leveraging blockchain for immutable logging and
querying across multiple sites. BMC Medical Genomics 13(Suppl 7):82
DOI 10.1186/s1290-020-0721-2.

Porebski S. 2022. Evaluation of fuzzy membership functions for linguistic rule-based classifier
focused on explainability, interpretability and reliability. Expert Systems with Applications
199(5):117116 DOI 10.1016/j.eswa.2022.117116.

Rajabi E, Etminani K. 2022. Knowledge-graph-based explainable AI: a systematic review. Journal
of Information Science and Engineering 33(1):1655515221112844
DOI 10.1177/01655515221112844.

Ryen V, Soylu A, Roman D. 2022. Building semantic knowledge graphs from (Semi-)Structured
data: a review. Future Internet 14(5):129 DOI 10.3390/fi14050129.

Sagi T, Wolf Y, Hose K. 2019.How new is the (RDF) news? In: Companion Proceedings of the 2019
World Wide Web Conference. New York: ACM, 714–721.

Sciriha I, da Fonseca CM. 2012. On the rank spread of graphs. Linear and Multilinear Algebra
60(1):73–92 DOI 10.1080/03081087.2011.567389.

Seo S, Oh B, Lee K-H. 2020. Reliable knowledge graph path representation learning. IEEE Access
8:32816–32825 DOI 10.1109/ACCESS.2020.2973923.

Severini S, Imani A, Dufter P, Schütze H. 2022. Towards a broad coverage named entity resource:
a data-efficient approach for many diverse languages. ArXiv preprint
DOI 10.48550/arXiv.2201.12219.

Simov K, Popov A, Osenova P. 2016. Knowledge graph extension for word sense annotation. In:
Innovative Approaches and Solutions in Advanced Intelligent Systems. Cham: Springer, 151–166.

Stančić H, Bralić V. 2021. Digital archives relying on blockchain: overcoming the limitations of
data immutability. Computers 10(8):91 DOI 10.3390/computers10080091.

Stock K, Yousaf J. 2018. Context-aware automated interpretation of elaborate natural language
descriptions of location through learning from empirical data. International Journal of
Geographical Information Science 32(6):1087–1116 DOI 10.1080/13658816.2018.1432861.

Tempelmeier N, Demidova E, Dietze S. 2018. Inferring missing categorical information in noisy
and sparse web markup. In: Proceedings of the 2018 World Wide Web Conference. New York:
ACM, 1297–1306.

Terenziani P. 2000. Integrated temporal reasoning with periodic events. Computational
Intelligence 16(2):210–256 DOI 10.1111/0824-7935.00112.

Troussas C, Krouska A. 2022. Path-based recommender system for learning activities using
knowledge graphs. Information 14(1):9 DOI 10.3390/info14010009.

van Beek P, Dechter R. 1997. Constraint tightness and looseness versus local and global
consistency. Journal of the ACM 44(4):549–566 DOI 10.1145/263867.263499.

Verma S, Bhatia R, Harit S, Batish S. 2022. Scholarly knowledge graphs through structuring
scholarly communication: a review. Complex and Intelligent Systems 9(1):1–37
DOI 10.1007/s40747-022-00806-6.

Wang H, Shang Y, Qiao X. 2020. The integrated organization of data and knowledge based on
distributed hash. In: 2020 IEEE International Conference on Knowledge Graph (ICKG).
Piscataway: IEEE, 243–250.

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 20/21

http://dx.doi.org/10.1145/3543508
http://dx.doi.org/10.1186/s1290-020-0721-2
http://dx.doi.org/10.1016/j.eswa.2022.117116
http://dx.doi.org/10.1177/01655515221112844
http://dx.doi.org/10.3390/fi14050129
http://dx.doi.org/10.1080/03081087.2011.567389
http://dx.doi.org/10.1109/ACCESS.2020.2973923
http://dx.doi.org/10.48550/arXiv.2201.12219
http://dx.doi.org/10.3390/computers10080091
http://dx.doi.org/10.1080/13658816.2018.1432861
http://dx.doi.org/10.1111/0824-7935.00112
http://dx.doi.org/10.3390/info14010009
http://dx.doi.org/10.1145/263867.263499
http://dx.doi.org/10.1007/s40747-022-00806-6
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

Wu W, Zhu Z, Zhang G, Kang S, Liu P. 2021. A reasoning enhance network for muti-relation
question answering. Applied Intelligence 51(7):4515–4524 DOI 10.1007/s10489-020-02111-6.

Yang M, Chen K, Sun S, Han Z, Kong L, Meng Q. 2022a. A pattern driven graph ranking
approach to attribute extraction for knowledge graph. IEEE Transactions on Industrial
Informatics 18(2):1250–1259 DOI 10.1109/TII.2021.3073726.

Yang Y, Huang C, Xia L, Li C. 2022b. Knowledge graph contrastive learning for recommendation.
In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval. New York: ACM, 1434–1443.

Yeh I, Karp PD, Noy NF, Altman RB. 2003. Knowledge acquisition, consistency checking and
concurrency control for gene ontology (GO). Bioinformatics 19(2):241–248
DOI 10.1093/bioinformatics/19.2.241.

Takan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1542 21/21

http://dx.doi.org/10.1007/s10489-020-02111-6
http://dx.doi.org/10.1109/TII.2021.3073726
http://dx.doi.org/10.1093/bioinformatics/19.2.241
http://dx.doi.org/10.7717/peerj-cs.1542
https://peerj.com/computer-science/

	Knowledge graph augmentation: consistency, immutability, reliability, and context
	Introduction
	Related work
	Material and Methods
	Limitations
	Knowledge graph augmentations
	Experiment
	Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

